从算法的角度上来看,Aleo属于零知识证明(ZKP)赛道项目,复杂度是比大饼和以太坊算法都要复杂的。算法的核心计算我们之前也提过主要是MSM+NTT/FFT的计算,还会包含一些Hash运算。这些计算主要目的是为了生成零知识证明,而生成证明的速度直接会影响生态的体验。
证明生成的过程中,约有60%的时间花在MSM上,其余时间由NTT/FTT主导。MSM和NTT都存在性能挑战,通常的解决办法:
●MSM可以在多线程上执行,从而支持并行处理。然而,当处理大型数据向量时,例如6700万个参数,乘法运算可能仍然很慢,并且需要大量的内存资源。此外,MSM存在可扩展性方面的挑战,即使在广泛并行化的情况下也可能保持缓慢。
既然共识是POS的,自然也就不怕ASIC控制网络,压根也控制不了,也就不存在分叉的问题,而且从算法和定位的角度上来说,ASIC也是必然需求。Aleo芯片机,Aleo-ASIC,zktaoma或者maxsayss
芯片的硬件指的是运行指令的物理平台,包括处理器、内存、存储设备等等。芯片数据中常出现的“晶体管数量”、“7nm制程”、“存储”等,往往指的就是硬件参数。
软件则包括固件、驱动程序、操作系统、应用程序、算子、编译器和开发工具、模型优化和部署工具、应用生态等等。这些软件指导硬件如何响应用户指令、处理数据和任务,同时通过特定的算法和策略优化硬件资源的使用。芯片数据中常出现的“x86指令集”、“深度学习算子”、“CUDA平台”等,往往指的就是芯片软件。